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Abstract

In this paper the fundamental solution for Kirchho� plate in the Laplace transform domain is deduced and the
boundary element formulation is established to study plate bending problem. By use of the moment integral
equation, the dual boundary element equation is developed to solve the cracked plate problem subjected to dynamic

loads. Durbin's Laplace transform inversion method is used and the dynamic stress intensity factors are determined
by equivalent stress technique. An in®nite plate containing an isolated crack or two cracks, or one set of parallel
cracks under Heaviside load on the crack surfaces is studied. The numerical results obtained demonstrate the

e�ciency and accuracy of the proposed formulation. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thin plate structures are widely used in analysing engineering structures. Numerical methods such as
the ®nite element method and ®nite di�erence method are well established in plate bending problems.
An early application of the boundary integral equation to the plate bending problem is due to Jaswon
and Maiti (1968). Later indirect boundary integral equation solutions of Kirchho� plate bending
problems were presented by Altirero and Sikarskie (1978) and Tottenham (1979). Direct boundary
integral formulations can be found in papers by several authors (see Maiti and Chakrabarty, 1974;
Stern, 1981; Du and Lu, 1986). For Reissner plate model, the boundary integral equation was reported
by Vander WeeeÈ n (1982), who used the Hormander method to deduce the fundamental solution.
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The applications of boundary element method to the dynamic analysis for plate bending problem
were presented by Bezin (1991). The mass matrix technique widely used by ®nite element method was
employed to deal with the dynamic response problems. Readers should consult Beskos (1991) for recent
developments in dynamics. A comprehensive description of recent advances in BEM in plate bending
can be found in Ref. (Aliabadi, 1998).

In this paper the fundamental solution for Kirchho� plate in the Laplace transform domain is derived
and the dual boundary integral equation is presented for the ®rst time. By the use of moment integral
equation on the crack surface, the discontinuity displacement (slop) can be determined which can be
used to evaluate the stress intensity factors at the crack tip. The choice of a special set of Laplace
transform parameters in the transform domain allows the displacements in the time domain to be
obtained by Durbin's inversion method (Durbin, 1974). Some numerical examples are presented to
demonstrate the application of the proposed method.

2. Fundamental solution

Consider an in®nite Kirchho� plate subjected to a concentrated force d�t� at the origin, the governing
equation in polar coordinate system (r, y� can be written as

r 2r 2w� � rh
D

@ 2w�

@t 2
� d�t� d�r� �1�

where D � Eh3=12�1ÿ n2�, E and n are the elastic constants, t is the time and r 2 is harmonic operator
de®ned by
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r

@
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Taking Laplace transforms, Eq. (1) becomes

r 2r 2 ~w� � rhs2

D
~w� � d�r� �2�

where s is the Laplace transform parameter. This governing equation is the same as that for plate
resting on the Winkler model foundation. The fundamental solution for Eq. (2) can be obtained as
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and its series expansion is listed in Appendix A, where i � �������ÿ1p
, x � r=l and l � �D=rhs2�1=4: Thus the

fundamental solution can be rearranged as
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By Laplace transform inversion formula, the fundamental solution in time domain can be obtained as
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where si�u� is sine integral and de®ned as

si�u� �
�1
u

sin u

u
du:

3. Boundary element method in Laplace transform domain

Consider an isotropic elastic plate O enclosed by boundary G: The out-of-plane transformed boundary
conditions are given as:
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and n and t are directions normal and tangential, respectively. The de¯ection at a domain point X ' in O
can be determined from the boundary values of moment and de¯ection through Betti's reciprocity
principle as
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where q(X ) is the distributed normal load intensity in domain. The moments in the domain, for instance
moment My, can be determined by following equation

My � ÿD
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where
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From the boundary integral equation (8), the moment equation becomes
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The de¯ection and moment boundary integral equations for the point on the external boundary G can
be obtained from Eq. (8) by considering the limit as the domain point X 04x 0 on the boundary. The
same procedure as illustrated by Aliabadi and Rooke (1991) can be used to obtain the boundary
integrals in the Laplace domain, for a smooth boundary, it can be written as
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for de¯ection, where
�ÿ denotes a Cauchy principal-value integral and
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where
�� denotes a Hadamard principal-value integral (see Hadamard, 1923) and the operator r 2
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For the pure model I crack bending problem, Eqs. (10) and (11) are su�cient. By applying the
de¯ection integral equation on one of the crack surfaces and the moment boundary integral equation on
the other, a pure model I crack problem can be solved in a single region as illustrated by Fedelinski et
al. (1995). For the mixed mode problems, the reduced Kirchho� force boundary integral equation
should be considered.

4. Discontinuity slop equation and stress intensity factor evaluation

Consider an in®nite plate containing a crack with the length 2a subjected to the bending moment
M0�x 0 � f �t� on crack surfaces as shown in Fig. 1. Considering the relationship:

~M
�
n � ~M

�
y � ÿDr 2

y ~w�, r 2
n � r 2

y

the moment Eq. (12) becomes:
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where y�x�� and y�x ÿ� are slops on the crack surface. Let Dy�x� � y�x�� ÿ y�x ÿ� be the discontinuity
of slop and consider the moment condition on crack surface, Eq. (13) gives�

�
G
Dr 2

yr 2
y ~w��x 0 ÿ x�Dy�x� dx �M0�x 0 �f�s� �14�

where

f�s� �
�1
0

f�t� eÿst dt:

To solve the above integral equation, constant elements are used in the numerical calculation as shown
by Wen et al. (1996a, 1996b) for two-dimensional and three-dimensional problems respectively. First,
the crack is divided into N straight segments and the mid-point of each segment is de®ned by coordinate
�x 0). Using this discretization for the moment Eq. (14), the integral equation for each element m
becomes:

XN
n�1

AmnDy
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ÿ
x 0m
�
f�s� �15�

where

Amn �
�
DGn

Dr 2
yr 2

y ~w�
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x 0m ÿ x

�
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and can be determined numerically by an in®nite integral as shown in Appendix B By solving the above
equations, the discontinuities of slop for each element can be evaluated numerically.

For constant elements, the equivalent stress technique can be used to obtain accurate stress intensity
factors, see Wen et al. (1996a, 1996b). For static Kirchho� bending problem, the fundamental solution
is

w��r� � r2ln r �16�

Ast
mn �

�3� n��1ÿ n�D
p

lÿ
x 0m ÿ x 0n

�2ÿl2
�17�

where l is the half-length of element �l � a=N). Because the singularity ®elds for stresses in the Laplace

Fig. 1. An isolated crack subjected to impact load.
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transform domain at a crack tip are the same as in elastostatic problems, the equivalent stress can be
written as

M0
m�s� �

XN
n�1

Ast
mnDy

n�s� �18�

From the Green's function formula for stress intensity factor (see Wen, 1996), it follows that
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From above equation, it can be seen that the stress intensity factor depends on the discontinuity slops of
all crack elements and not just the elements close to the crack tip. However, the closer to the crack tip
an element is, the greater is its in¯uence. The time-dependent stress intensity factor can be obtained by
an inverse transform, see Durbin (1974). The formula used is as follows
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i
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!
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where ~KI�s� stands for the value in Laplace space at the sample point sk � c� 2kpi=T: The sample
points are chosen for k � 0, 1, � � � ,L: Accurate results have been obtained for cT � 5 and T=t0 � 20,
where t0 � a=c2 is unit time.

5. Numerical example

To demonstrate the accuracy of the above method, several numerical examples under dynamic load
are studied in this section. The ®rst example shows the application to an isolated crack in an in®nite
domain subjected to uniform impact load M0H�t�: The second and the third examples demonstrate the
application to two collinear cracks and a periodic parallel cracks under the impact load. The normalized
dynamic stress intensity factors KI�t�=M0

������
pa
p

versus the normalized time c2t=a for Poisson's ratio n �
0:25 are presented, where c2 �

���������
G=r
p

is the velocity of elastic shear wave and G is elasticity constant.

5.1. Example 1: isolated crack under impact load

An isolated crack of length 2a in an in®nite sheet subjected to a uniform impact load M0H�t� is
shown in Fig. 1, where H�t� is the Heaviside function. The number of elements N = 10 and the number
of sample points in Laplace transform domain L = 200. The normalized dynamic moment intensity
factor F�t� to static value M0

������
pa
p

for the di�erent ratios a=h are shown in Fig. 2. Unlike the two-
dimensional and three-dimensional elastodynamic cracked bodies (see Wen et al., 1996a, 1996b), the
dynamic moment intensity factor increases with time and approach the static value (1.0) smoothly.
Decreasing plate thickness tends to lower the KI�t� value. The relative error between the solutions for
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di�erent element number N>10 are very small. Sih and Chen (1977) results of time dependent moment
intensity factor are plotted in the ®gure for comparison.

5.2. Example 2: two collinear cracks under impact load

Two collinear cracks AB and CD are shown in Fig. 3 with a uniform impact moment M0H�t� acting
on one of the crack surfaces (left). The length of each crack is 2a and the distance between two crack
centres is d. The number if elements N = 10 and the number of sample point in Laplace transform
domain L = 200. The normalized moment intensity factors FA, FB are almost the same as that in
Example 1. For the free crack CD, the normalized factors FC and FD to K 0 �M0

������
pa
p

at points C and
D are shown in Fig. 4 for di�erent ratios a/h against the normalized time c2t=a: Because the moment
intensity factors FA and FB are the same for small time t, it means that the interaction between two
cracks is very small. The dynamic moment intensity factors are very smooth and approach the static
values. When the dynamic load are applied on the both crack surfaces, the moment intensity factors at
point A and B are shown in Fig. 5. In this case the static values can be written as (see Isida, 1977)

F st
B �

1

2l
�1ÿ l�1=2

�
�1� l�2E�m�

K�m� ÿ �1ÿ l�2
�

Fig. 2. Dynamic moment intensity factors for di�erent ratios a/h.

Fig. 3. Collinear cracks subjected to impact load.
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F st
A �
�1� l�3=2

2l

�
1ÿ E�m�

K�m�
�

where m � 2
���
l
p
=�1� l�, l � 2a=d and E�m�, K�m� are complete elliptic integrals of the ®rst and second

kinds respectively. If d � 3a, l � 2=3, m = 0.9798, the static moment intensity factors are F st
A � 1:0524

and F st
B � 1:1111.

Fig. 4. Moment intensity factors at points C and D for collinear cracks.

Fig. 5. Results for collinear cracks at points A and B for impact load on two cracks.
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5.3. Example 3: periodic parallel cracks under impact load

Periodic parallel cracks of length 2a in an in®nite sheet subjected to a uniform impact load M0H�t� is
shown in Fig. 6, the distance between cracks is d. The number of elements and the number of sample
point in Laplace transform domain are the same as in above examples. The normalized dynamic
moment intensity factors for the l � 2a=d � 0:5, 0.9 and 2 with ratio a=h � 1 are shown in Fig. 7. In
this case, the interaction between cracks is very large and the dynamic moment intensity factors oscillate
about the static values.

Fig. 6. Periodic parallel cracks.

Fig. 7. Results for Periodic parallel cracks under impact load.
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6. Conclusion

The problem of cracks in plate bending subjected to dynamic loading was studied by boundary
element method in the Laplace transform domain. Dual boundary integral equations for crack bending
problems were established by Betti's reciprocity principle. For an in®nite plate problem with straight
cracks, the integral equations contain only unknown of discontinuity slop. By use of constant element
and equivalent stress technique, the moment intensity factors can be determined with high accuracy.
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Appendix A. Functions of fundamental solution

Because the Bessel function K0�z� can be written as
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and g � 0:577215664 is Euler's constant. Thus
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The fundamental solution in Eq. (13) can be written as

P.H. Wen et al. / International Journal of Solids and Structures 37 (2000) 5177±51885186



r 2
yr 2

y ~w� � l 2

4

 
@4f0
@y4
� 2n

@4f0
@y2@x 2

� n2 @
4f0
@x4

!

� 1

64l 2

"
4
ÿ
3� 2n� 3n2

�
f �2� � 4

�
3y2 � n

ÿ
y2 � x 2

�
� n2x 2

�
l 2

f �3� �
ÿ
y2 � nx 2

�2
l 4

f �4�

#
�A:3�

where

f �n� � @nf�u�
@un

,
@u

@x
� x

2l
,
@u

@y
� y

2l

Appendix B. Matrix coe�cients

From Eq. (15), the Bessel's function K0�z� should be used to determine the coe�cient Anm: Consider
the following integral relation
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Thus for constant elements
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where b2 � is
������������
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p
: It is simple to obtain the numerical values of Amn for given Laplace transform

parameter sk: For periodic parallel cracks as shown in Example 3, the coe�cient Anm should be
considered as the contribution by all elements on each crack and can be written as

Anm � Anm�xm ÿ xn, 0� � 2
X1
k�1

Anm�xm ÿ xn, kd�

where d is the distance between two crack centers.
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